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The aim of the research is to detect and remove undesired components from EEG data by 
means of ICA approach. Besides classical signal analysis tools such as adaptive supervised 
filtering, parametric or non-parametric spectral estimation, time-frequency analysis, the 
proposed ICA technique can be used for detection of a wide group of artifacts from EEG 
data. In this paper a new form of nonlinearity implemented in the infomax approach is 
presented. As it has been proven experimentally, the proposed new sigmoidal function can 
effectively detect the selected group of artifacts from EEGs and is an useful approach to 
speed up computations.
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1. Introduction

The Electroencephalogram is a biological signal recorded at the scalp and represents 
electrical activity of the brain. The analysis and extraction of information from the 
EEG data is a difficult problem, because these low amplitude signals are distorted 
by different undesired components – artifacts and noise [1]. 
 The EEG artifacts may be divided into two groups depending on their origin: 
physiological artifacts or technical artifacts [2]. Eye movements, ECG, EMG, pulse, 
sweating, patient’s body movements are examples of the biological artifacts. 50 Hz 
line noise, static electricity discharges, movements of electrode leads are examples 
of the technical artifacts. Generally, artifacts should be removed from the recording 
by the technician performing the EEG examination, but it is not always possible.
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 Many methods have been proposed to remove the most popular artifact: eye 
blinks, muscle activity or line noise from EEG data, including methods that use 
frequency – band filtering technique and methods based on regression or principal 
component analysis (PCA) [2, 3]. In practice, any frequency component above 
100 Hz is removed with lowpass filters, because the routine EEG recordings contain 
data below this value. In cases, where the EEG data acquisition system is unable 
to cancel out line frequency, a notch filter is used. However, these methods lead to 
considerable loss in collected information. For that reason it has been proposed the 
ICA approach. 
 Generally, the choice of adaptive algorithm depends on statistical properties of 
the source signals. The assumption of independence and nongaussianity of the EEG 
signals was justified through the successful application of the ICA approach to the 
detection and extraction of selected artifacts in EEG data [3–10]. The algorithms for 
separation of artifacts from EEG data can be divided into two categories: adaptive 
and batch mode algorithms [5]. 
 In the first category the adaptive algorithms often are based on stochastic gradient 
methods. The main problem of the adaptive gradient algorithms is the slow conver-
gence, which can be improved using the natural gradient method and dependence on 
the correct choice of the learning rate parameters in neural networks [5]. In the case, 
where all the independent components are estimated at the same time, an extended 
infomax algorithm is used to  maximize the output entropy [6, 7]. 
 In the second category, where all the computations are made in batch mode, the 
tensor based methods and algorithm based on a fixed point iteration are available, 
for example: the JADE algorithm (Joint Approximate Diagonalization of Eigenma-
trices), which diagonalizes the fourth-order cumulant of the estimated sources [3, 8] 
or the FastICA algorithm based on maximizing the negentropy or kurtosis [6, 9]. For 
computational reasons, the tensor based methods cannot be used in larger dimen-
sions. FastICA can be used for extracting the independent components one-by-one 
only on basis of their kurtosis and is a much faster algorithm than that given by the 
gradient method. It is used for separation of the EEG data with good accuracy, but 
corrupted only by eye and muscle artifacts. 
 A different method for the artifacts separation exploits nonstationarity of the 
EEG signals, i.e. SOBI (Second-Order Blind Identification). This algorithm is based 
on second-order statistics and separates temporally correlated sources. Mostly, it is 
used for extraction of the ocular artifacts [3, 10]. 

2. Method

For the artifacts removal we propose the infomax approach. It has been proven that, 
for separation of the EEG data, the best performance can by achieved using the info-
max rule [7, 11]. Sigmoid functions used in the infomax algorithms, e.g. the logistic 
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 is the hypothesized distribution of p(s). The presented algo-

rithm that uses a logistic sigmoid was implemented in [13] for separation of the 
EEG signals. However, it is limited to extracting of sources with the supergaussian 
distributions only. 
 In the normal brain activity the EEG data have the supergaussian distribu-
tions. Furthermore, a high positive normalized kurtosis value (higher than 5) 
indicates an abnormal brain activity, e.g. an epileptic seizure and nonepileptic 
attacks, event-related potentials or any physiological artifacts. It is worth to note, 
that the non-physiological artifacts and the slow brain activity have the subgaus-
sian distributions. Therefore, for separation of the EEG data an extended infomax 
algorithm has been proposed [6], which can separate both types of distributions 
using a parametric density model:
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where: K is N – dimensional diagonal matrix with the kii elements. For supergaussian 
sources kii = 1 and for subgaussian sources kii = –1. In this algorithm, the subgaussian 
distributions can be modelled with a symmetrical form of the Pearson mixture model 
and the supergaussian distributions can be modelled as derivative of the hyperbolic 
tangent. The following switching criterion between the sub- and supergaussian 
learning rule was used [6]:
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The learning rule given by eq. 3 is the final version of the infomax approach imple-
mented in the EEGLAB toolbox [13].
 In [14] it has been presented a general form of the extended infomax algorithm,
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assumption is allowed to choose the optimal nonlinearity g(u) for separation of 
different nongaussian distributions [14]. The proposition of the general form of the 
extended infomax algorithm is written as:
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where k can be derived from the stability analysis of separating signals [6] or can be 
the sign of normalized kurtosis [12]. 
 For the EEG signal separation we propose a new form of nonlinearity imple-
mented in the infomax approach presented in eq. 5. The new nonlinear function is 
given by:
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where the coefficient b is the slope parameter. Shape of the new function for differ-
ent values of the slope parameter is presented in Fig. 1. The proposed non linearity 

Fig. 1. Algebraic bipolar sigmoid function g
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Fig. 2. Comparison of the typical transfer functions and their derivatives: logistic sigmoid
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with its unipolar form: guni(u) = 0.5 · gbip(u) +  0.5, u is a vector

is an algebraic bipolar sigmoid function that belongs to the type of the simple 
sigmoids and satisfies their conditions [15]. This function is applied for separation 
of two types of the EEG signal distributions, i.e. subgaussians (i.e. platykurtic, 
normalized kurtosis < 0) and supergaussians (i.e. leptokurtic, normalized kurtosis 
> 0). The proposed function can be linearly transformed to obtain output between 
0 and 1, i.e. guni (u) = 0.5 · gbip (u) + 0.5, which is shown in Fig. 2. The form of 
the score function φ(u) depends on the type of the nonlinear function and the 
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value of the slope parameter. Hence, for b > 0, the score function is defined as:
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The switching criterion for the new proposition of the adaptive learning infomax 
rule is the sign of the normalized kurtosis (k < 0 for the subgaussian distributions, 
k > 0 for the supergaussian distributions). The presented new learning rule satisfies 
the sufficient condition that guarantees asymptotic stability [16], i.e. κi > 0, where
κ ϕ ϕi i i i i i iE u E u E u u= ′{ } { } − { }( ) ( )2 . For the new infomax rule the asymptotic 
 stability is always guaranteed, because:
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 In this algorithm we use the preprocessing technique – Principal Component 
Analysis for whitening the observed mixture vectors.

3. Materials

In this experiment we prepared two types of the EEG recordings. In the first case, the 
EEG signals were recorded using the multi-channel Grass Technologies Comet EEG 
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system with AS40 amplifier and the digital EEG simulator. The EEG data were collected 
from 21 scalp electrodes with a sampling rate of 400 Hz. These waveforms include the 
standard EEG recordings with symmetrical eye movements, but for this experiment 
we added an additional sequence of the presented artifact. The real EEG signals were 
recorded at a 400 Hz sampling rate using a 19-electrode scalp longitudinal montage. 
These signals are heavily corrupted by 50 Hz line noise and muscle activity.  Figure 3 
and Figure 4 are shown a 5-sec interval of two types of the EEG recordings. 

Fig. 4. The figure illustrating a set of the real EEG recordings affected by line noise and muscle activity
(LF = 1 Hz, HF = 70 Hz)

Fig. 3. The figure illustrating a set of the simulated EEG signals affected by the symmetrical eye
movements  (LF = 1 Hz, HF = 70 Hz)
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 The new version of the infomax approach presented in eq. 8 has been imple-
mented in the MATLAB software using the EEGLAB toolbox [13]. The following 
weight update rule is used to perform ICA:

   ∆ ∆W W Wn n n+( ) = −( ) ( ) + ( )1 1 α α , (10)

where: α > 0. The learning rate was changed from 0.001 to 0.000002 during conver-
gence. The accuracy was measured using the Performance Index [17] defined as: 
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where: gij – is the (i,j) element of the global system matrix G = WA, max j gij  – is
the maximum value among the elements in the i-th row vector of G, max j jig –
represents the maximum value among the elements in the i-th column vector of G.
The second proposed measure is the normalized kurtosis, which express different 
results of the separating process obtained by using two algorithms. Moreover, we use 
box plots of the PI index to compare the accuracy of two presented algorithms.

4. Results

The results of separation and elimination of the selected artifacts from the simulated 
and real EEG recordings are presented in Fig. 5, Fig. 6 and Fig. 7. 
 Figure 5A shows the ICA components obtained from a 2-sec interval of the 
recorded EEG time series collected from 21 simulated scalp activations using the 
new infomax algorithm. The two components presented by the scalp topographies 
are the symmetrical eye movements. Figure 5B presents the waveforms of the EEG 
data before and after elimination of the eye artifacts by removal of the component 
1 and 3.  In this figure, the results of using the infomax rule for the separation have 
been shown.  Moreover, the analysis presented in Table 1 shows differences between 
values of the normalized kurtosis for two algorithms. In this experiment the eye 
artifacts were largely reduced, but not completely removed.
 The next ICA decomposition was performed on the 3-sec EEG real data and it 
was used twice, because of the line noise artifact. Firstly, we removed noisy time seg-
ments presented by one component, which is shown in Fig. 6A. Components 14, 15, 
17 and 19 probably represent muscle noise. Figure 6B shows the distribution of line 
noise power near 50 Hz in the EEG recordings. The line noise power accounted by 
two algorithms for was calculated by averaging power near 50 Hz in the projections 
of each of the 19 components. The new version of the infomax algorithm separated 
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Fig. 5. Results of separation and elimination of the eye artifacts. A. A 2-sec interval of the ICA com-
ponents extracted by the new version of the infomax algorithm and the scalp maps of two components 
accounting for symmetrical eye movements. B. Two frontal channels (Fp1-REF,  Fp2-REF) before and

after elimination of the eye artifacts by the extended infomax algorithm and our proposition

                  A

                  B

the line noise power into one component, which accounted for 78.3% of this artifact 
in the EEG data. The extended infomax algorithm isolated the line noise artifact into 
the component no. 4, which composed of 74.8% of this undesired signal. The result 
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Fig. 6A. A 3-sec interval of the ICA components extracted by the new version of the infomax algorithm
(top figure) and the activity power spectrum of the component no. 7 (bottom figure)

Table 1. The values of the normalized kurtosis before and after elimination of the symmetrical eye
movements from the simulated EEG data

Fp1-REF Fp2-REF

original ‘clean’ EEG data   3.970   3.973

EEG data with artifacts 13.058 13.062

corrected by the extended infomax algorithm   4.051   4.057

corrected by the new infomax algorithm   3.972   3.975
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Fig. 6B. The ratio of line noise power in the EEG data (top panel) with the ICA components extracted 
by the new version of the infomax algorithm (middle panel) and the extended infomax algorithm (bot-
tom panel). The vertical axis represents the ratio of power at the line frequency (50 Hz). The horizontal

axis is a number of the channels or the components

of the line noise elimination by the extended infomax algorithm is almost the same 
like the one presented in [6]. It is worth to note, that in [6] the EEG time series was 
collected only from 13 scalp electrodes. The results of the line noise elimination by 
two adaptive algorithms can be seen in Fig. 6C.
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Fig. 6C. Comparison of the line noise removal by eliminating the chosen components (4 and 7), which 
are  presented in Fig. 6B. The top figure illustrates one selected channel T3 before and after elimination 
the line noise artifact extracted by the extended infomax algorithm and our proposition. The bottom
figure shows the all ‘corrected’ EEG data obtained by using the new version of the infomax algorithm 

 In the following step, we prepared the second decomposition. Figure 7A shows 
the independent components and the muscle artifacts localized between 8 and 9 sec 
presented by three components: 13, 14 and 19. After elimination of these compo-
nents, we obtained the result illustrated in Fig. 7B. The separation carried out by the 
extended infomax algorithm was not precise, because in the corrected EEGs occurred 
a short interval of the undesired components. The differences between values of the 
normalized kurtosis are shown in Table 2.
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Fig. 7. Results of separation and elimination of the muscle artifacts from the real EEG data. A.
A 3-sec interval of the ICA components extracted by the new version of the infomax algorithm and 
the scalp maps of three components accounting for the muscle artifacts. B. Three channels (C4-REF,
T4-REF, T6-REF) before and after elimination of these artifacts by the extended infomax algorithm and

our proposition

 A

 B

Table 2. The values of the normalized kurtosis before and after elimination of the muscle artifacts from
the real EEG data

C4-REF T4-REF T6-REF

real EEG data with artifacts 10.448 13.582 9.554

corrected by the extended infomax algorithm   3.981   4.087 3.784

corrected by the new infomax algorithm   3.758   4.079 3.702
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 Performance comparison between the extended infomax algorithm and our 
proposition is shown in Fig. 8. In ideal case, when the perfect separation is achieved, 
the PI index is zero. In practice, the value of this index has been changed between 
10–4 to 101. It means that the adaptive algorithms separated these EEG signals quite 

Fig. 8. The mean value of the PI index versus number of iteration for the separation of the simulated 
EEG recordings and the real EEG data by the new version of the infomax algorithm (a – 19 channels, b 
– 21 channels) and the extended infomax algorithm (c – 19 channels, d – 21 channels). The mean value

of the PI index for 100 runs
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good and it is small probability of removal of the desired brain signals. Moreover, 
both algorithms converge to the correct solution, but the proposed new learning 
algorithm converges faster than method presented in eq. 3. The differences between 
the mean value of the PI index of the simulated EEGs (21 channels) and the PI index 
of the real EEGs (19 channels) depend on the type of the transfer function and the 
number of signals, which are shown in Fig. 9. 

5. Discussion

The success of using the presented infomax algorithm to artifact removal from the 
EEG data only depends on the choice of the nonlinear function g(u), because the 
basic idea of the infomax rule is to match the slope of the nonlinear transfer function 
of the elementary processing unit in a neural network with the input PDF. 
 It is difficult to verify the results of eliminating artifacts from the EEG real data. 
Generally, it is use the visual inspection of ‘clean data’ or spectral plots. In [6] it has 
been analyzed the spectrograms of the EEG recordings before and after the elimina-
tion of activity produced by the eye movement. In addition, the new performance 
BCR is presented in [10]. The BCR (brain – to – contamination ratio) metric was 
the determinant of the correlation matrix of the original and the recovered brain and 
contaminant signals. However, for verification of the quality of separation of the 
EEGs the PI index can be proposed. Using this coefficient as a measure of accuracy 
is particularly simple, because the small value of the PI index gave small probability 
of removal of the desired brain signals. The next our proposition is the value of the 
normalized kurtosis, which can be used in analysis of the simulated EEG data. In the 
real EEG recordings, this measure shows only the differences between the results 
of eliminating of the artifacts obtained by using the separation algorithms, but is a 
very useful, when we try to compare the same algorithms with different nonlinear 
functions.

6. Conclusion

During the tests, it was observed that the proposed adaptive algorithm with the new 
nonlinearity can effectively detect the typical artifacts. Furthermore, it converges 
faster than the extended infomax algorithm using the parametric density model. All 
presented artifacts were largely reduced by using the new version of the infomax 
algorithm.
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