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In the Support Vector Machines classification technique the best possible discriminating 
hyperplane between two populations is looked for by maximizing of margin between the 
populations’ closest points. This idea is also applied for obtaining nonlinear discriminant 
boundaries by using different kernels for transformations, thus obtaining a nonlinear  Support 
Vector Machines method. The nonlinear Support Vector Machines method is based on pre-
-processing of data to represent patterns in high dimension- usually much higher than the 
original variable feature space. 
In the presented work the dependency of Support Vector Machines performance on the 
kind of kernel and Support Vector Machines parameters is presented. The performance was 
assessed by resubstitution, 10-fold cross-validation, leave-one-out error, learning curves and 
Receiver Operating Characteristic curves. The kind and shape of the kernel is more important 
than regularization constant allowing different levels of overlapping classes. Combining 
boosting and Support Vector Machines did not improved performance in comparison to 
Support Vector Machines method alone, because both Support Vector Machines procedure 
and boosting are focused on observations difficult to classify. 

K e y w o r d s: Support Vector Machines, regularizing constant, kernel function, kernel 
parameter selection

1. Introduction

There is a variety of methods for linear discrimination in the two-class case: Fisher 
linear discrimination, least mean squared error-pseudo-inverse, perceptron, relaxa-
tion and Support Vector Machines. Some of them can find a boundary that divides 
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two classes if they are separable, others can not. The Support Vector Machines 
method [1] provides an optimally separating hyperplane in the sense that the margin 
between two groups is maximized. Expanding of this idea to the nonlinear classifier 
provides classifiers with significantly good generalization properties. The Support 
Vector Machines classification technique is based on mapping the data to represent 
observations in high dimensional space- usually much higher than the original 
feature space. With an appropriate nonlinear transformation to a sufficiently high 
dimension, data from two categories can always be separated by a hyperplane. The 
main advantage of the Support Vector Machines is that complexity of the classifier 
is determined by the number of support vectors rather than the dimensionality of 
the transformed space. As a consequence, Support Vector Machines have less often 
problems with overfitting than many other methods. User of Support Vector Machines 
can avoid overfitting by controlling the margins. Support Vector Machines method 
minimizes the expected generalization error rather than apparent error. Theoretical 
bounds on the expected generalization error are given. Another benefit is the global 
optimization (solution of the optimization problem is the global minimum). More, 
for Support Vector Machines the “curse of dimensionality” is avoided- Support 
Vector Machines is appropriate for high dimensionality. A great benefit of Support 
Vector Machines results also from the simple implementation coming from kernel 
formulation. On the other hand, a drawback of Support Vector Machines is long 
training time for large sets, because quadratic optimization scales poorly with the 
number of training examples. 
 Kernel functions can range from simple linear and polynomial transforma-
tions to sigmoidal kernels and radial basis functions. Various kernel functions 
have different properties and different kind of parameters, apart from the common 
regularizing (penalty) parameter C. Support Vector Machines procedure has only 
few free parameters. Thus it is interesting to study importance of the different pa-
rameters connected with the kernel function. Importance of the kernel shape and 
the kernel parameter selection for good performance is very important topic. In 
model selection the user should make a decision which one of the universal kernel 
functions (e.g. linear, polynomial, radial basis and sigmoidal) will be examined. 
After that, the parameters of Support Vector Machines typically must be selected 
to give reasonable results. Good parameter selection is fundamental to the Support 
Vector Machines’ success. The kernel function settings are hard to select before 
seeing the training data, so experimental methods will be used for choosing of 
kernel parameters. The clear method is to estimate an array of possible settings, 
for example the regularizing parameter C (penalty for overlapping), the polynomial 
order and other kernel parameters. By putting some error assessment (leave-one-
out or more general cross-validation) into this table the best setting of parameters 
can be discovered.
 The aim of the work is to study the Support Vector Machines’ performance for 
various kernels (Gaussian, polynomial, radial sigmoidal, and linear), different kernel 
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parameters and different dimensionalities on the basis of medical data sets and to 
check usefulness of boosting combined with Support Vector Machines. 
 Calculations were done by own programs using Matlab6 and the svc procedure 
from PRTOOLS4 package and by the svc procedure from package e1071 of R . 

2. Support Vector Machines 

Linear functions in discrimination can be divided in methods performed in the origi-
nal feature space (e.g. linear discriminant function, linear perceptron, linear Support 
Vector Machine) and in the transformed feature space (nonlinear Support Vector 
Machine, other kernel methods). Thus Support Vector Machines are linear methods 
in the original or transformed feature spaces. 
 Support Vector Machines up till now represent a powerful technique for 
nonlinear classification, regression and outlier finding. Support Vector Machines 
were developed by Cortes & Vapnik [1] from Vapnik’s work on Structural Risk 
Minimization. The Support Vector Machines method was elaborated in the machine 
learning theory for binary classification. The interesting feature of Support Vector 
Machines method is an intuitive model representation. The approach may be gener-
ally characterized as follows: the best possible discriminating hyperplane between 
the populations is looked for by maximizing the margin between the populations’ 
closest points. The margin is a minimal Euclidean distance between any training 
example and the separating hyperplane. The observations which are lying on the 
boundaries (support hyperplanes) are called the “support vectors” and the middle 
between the support hyperplanes is the optimally separating hyperplane. The sup-
port vectors are the training samples that identify the optimal separating hyperplane 
and are the most difficult to classify. 
 First of all the simplest linear Support Vector Machines will be presented. For 
separable data the algorithm is defined as follows:
 The equation for a separating hyperplane in the linear Support Vector Machines 
method is

   f (x) = wT x +b  (1)

where vector w is normalized such that: 

   min [i = 1,..,n] | f(xi)| = 1 holds

and n- is the number of observations in learning set.
For x which is the support vector (SV) we have 

   wT x + b = 1  or  wT x + b = –1.  



66 M. Ćwiklińska-Jurkowska

Then the margin is equal to 2/||w||. The value 1/||w|| is the distance of the support 
vectors from the decision hyperplane. The larger the margin the lesser the generaliza-
tion error of the Support Vector Machines classifier.
 The Support Vector Machines method finds the separating hyperplane with the 
largest margin, so dual optimization problem for Support Vector Machines is:
 – We have the objective function 

   min [w,b] 1/2|| w|| 2

 – subjected to constrains 

   yi[wT x + b] ≥ 1        for i = 1,..,n (2)

where yi = 1 or yi = –1.
 The optimization problem is quadratic-linear (the task of quadratic objective 
function with linear constrains) and can be solved by Lagrange multiplier method. 
The support vectors are the training patterns for which the above inequality represents 
the equality so they lay on the support hyperplanes. The separating hyperplane is 
parallel to the support hyperplanes and is laying in the middle of distance between 
the support hyperplanes.
 The support vectors are the training observations that identify the optimal sepa-
rating hyperplane. In contrast to many neural networks methods one can always 
find the global minimum, although minimum may be not unique as for example 
in the case when dimensionality of the problem d is smaller than n (number of 
observations). Vapnik-Chervonenkis (VC) dimension of a set of functions is de-
fined as a maximum number of training points that can be shattered i.e. separated 
for all possible labeling. If the VC dimension is m, then there is at least one set 
of m points that can be shattered, but not necessarily every set of m points can 
be shattered. For linear discriminant function it is equal to d + 1, where d is the 
dimensionality.
 Vapnik [2] shown that the value v which is the Vapnik-Chervonenkis dimension 
VC for the linear Support Vector Machines is bounded by: 

   v ≤ min (Λ2 R2 + 1, d + 1),  (3)

where the equation for the boundary hyperplane is f (x) = w T x + b , the dimension-
ality of the problem is d and Λ is such value that ||w|| ≤ Λ and finally R is the radius 
of the smallest sphere around the data. 
  Large margin (margin is equal to 2/||w||) diminishes complexity of a lin-
ear Support Vector Machines classifier. On the other hand, if we agree to smaller 
margins, there is bigger number of separating hyperplanes, what means that the
Vapnik-Chervonenkis dimension v is bigger. 
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 From the above inequality (3) it is clear that complexity v only indirectly depends 
on dimensionality of the data d, while other machine learning procedures like neural 
networks and classification trees depend strongly of dimensionality. There is also 
important difference to e.g. kernel Bayesian discrimination where the classification 
becomes difficult for big dimensionality of data (for the kernel discrimination the 
procedure of local smoothing is impossible for high dimensional data when data is 
sparse in such high dimensional space while for Support Vector Machines the way of 
using the kernel functions is quite different, so the Support Vector Machines method 
in opposite to the kernel discrimination is appropriate for solving multidimensional 
problems). For the Support Vector Machines the classification problem remains easy 
if a large margin can be achieved, however, the selection of the kernel is important. 
Support Vector Machines are not faced with the curse of dimensionality. Complexity 
of Support Vector Machines is connected with the number of support vectors, which 
are the most difficult patterns from learning data to classify.
 When the classes are not linearly separable, a variant of Support Vector Machines, 
called a soft-margin Support Vector Machine is used. This variant penalizes its clas-
sification errors and employs a parameter (the soft margin constant C) to control the 
cost of misclassification. Parameter C is nonnegative.
For non-separable data we may relax inequality (hard-margin constrains)

   yi [wT x + b ] ≥ 1

where yi = –1 or yi = –1

to become 

   yi [wT x +b ] ≥ 1 + Ki   where   yi = 1 or yi = –1  (4)

where Ki ≥ 0 are called “slack” variables .
For non-separable case the modified objective function is used

   min[w,b,K] ½ ||w || 2 + C (K1 +…+ Kn)  (5)

where K = (K1,…,Kn).
 The Support Vector Machines solution can be found by keeping the upper bound 
on the VC-dimension small and by minimizing the upper bound of the empirical risk 
K1 +…+ Kn. The default value of C is 1. If C < 1, we agree with overlapping. The 
smaller C the bigger overlapping. Constant C determines the trade-off between the 
empirical error and the complexity, so C is called a regularization constant. It is clear 
that the value K1 +…+ Kn is connected with the penalty for the overlapping.
 The selection of constant C can be used by the user by examining of test or 
cross-validation error or other assessment of probability of classification error. 
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Choosing the constant C corresponds to regularization, because smaller values can 
help to avoid over-fitting of the discriminating hyperplane. It is especially important 
for hypersurface of more complex shape. When two classes are unbalanced, differ-
ent penalty for misclassification can be associated to each of the classes. It can be 
realized in Support Vector Machines by means of two C parameters (by weighting 
C we obtain C1 and C2 for classes Π1 and Π2, respectively).
 Thus support vectors are the “most informative” for the classification task and 
the support vectors are (equally) close to the hyperplane. They are close to the clas-
sification boundary or misclassified. 
 Structural Risk Minimization principle from Vapnik [2] lays ground for the Sup-
port Vector algorithm and an upper bound on the generalization error is minimized. 
By the use of Structural Risk Minimization the classification rule is less sensitive to 
the dimensionality of the space and achieves good generalization. 
 The computational cost of Support Vector Machines is O(n2 ns ) [7], due to solving 
a quadratic programming problem arising in the Support Vector Machines algorithm, 
where ns is number of the support vectors. Number of the support vectors ns usually 
increases linearly with n [8]. An important property of Support Vector Machines is 
that it only estimates sign [P(Y = 1|X = x) – ½] while the conditional probability of 
a point x being in population Π1: P(Y = 1|X = x) is often of interest. 
 Fundamental to the success of Support Vector Machines was re-discovery of 
the so-called Reproducing Kernel Hilbert Spaces and Mercer’s [3] theorem (the 
kernels satisfying the Mercer’ theorem are called Mercer kernels). The basic idea of 
the so-called kernel methods is at first preprocessing of the data by some non-linear 
mapping Ψ and then applying the same linear algorithm as mentioned before but in 
the image space of mapping Ψ. Scalar product is now definite by the positive definite 
kernel function K

   K(x,x’ )= Ψ(x)T Ψ(x’ ). (6)

The data set is mapped from the original d-dimensional space by the function Ψ 
induced by the kernel function K. The kernel trick from Vapnik [2] is to take the 
original algorithm for the linear Support Vector Machines and formulate it such, 
that we only use Ψ(x) in scalar products. If we can efficiently calculate these scalar 
products, we do not need to carry out the mapping Ψ explicitly.
 For the nonlinear Support Vector Machines data are nonlinearly transformed 
to a high-dimensional feature space. The nonlinear classification boundary in the 
original d-dimensional space corresponds to a linear boundary in the transformed 
by Ψ feature space. The dimension of the transformed space can be very large, even 
infinite in some cases. 
 After such kernel transformation we look also for linear boundaries that give op-
timal class separation in such transformed data spaces. Linear, polynomial,  Gaussian, 
radial basis function, inverse multiquadratic and sigmoidal kernels are most often 
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used. With an appropriate nonlinear mapping to a sufficiently high dimension, data 
from two groups can always be discriminated by a hyperplane, though then the 
method can have a drawback of overfitting.
 At the moment Support Vector Machines have become a popular technique in 
flexible modeling, though there are some disadvantages, eg. Support Vector  Machines 
method works relatively badly with the data size- due to the need of quadratic op-
timization procedure. Additionally, the correct choice of the kernel parameters is 
fundamental for obtaining good results, which means that a wide search must be 
performed on the parameter space, and this frequently makes the work difficult.
 Expected value of generalization error eG of the Support Vector Machines clas-
sifier is bounded by [2]

   En (eG) ≤ En (Ns)/n (7)

where
 n – number of patterns,
 Ns – the total number of support vectors,
 En – denotes the expectation over all training sets of size n. 
 The bound of En(eG) is independent of the dimensionality of the vectors in the 
transformed space determined by function Ψ. When we can find a transformation Ψ 
that well separates the data set (the En(Ns) – expected number of SV is small ) then 
from the above bound expected generalization error will be low. Thus the number 
of support vectors has a relationship with accuracy.
 The kernel functions K(x,y) can be defined by the following types: 

   polynomial K(x,y) = (γ xy′ + a)p (8)
   homogeneous K(x,y) = (x y′ )p (9)
   exponential K(x,y) = exp(– (||x-y||)/p) (10)
   radial basis K(x,y) = exp(– (γ||x-y||/p)2)) (11)
   sigmoidal K(x,y) = s[(x y′ )/p] 

where s is sigmoidal function, for example  (12)

   s(x) = exp (x)/[1 + exp(x)]  (13)
or 
   K(x,y) = tanh ( γ x y′ + a). (14)

If s is sigmoidal kernel function then
lim t→ -∞ s(t) = 0 and lim t→∞ s(t) = 1.
 Easy, symmetric functions of two vector arguments from the original 
d-dimensional space Rd called kernel functions allow to count the scalar product in 
the transformed space. 
 Chang & Lin [4], the authors of the “libsvm” procedure in R package, performed 
some work on methods of efficient automatic parameter selection. The existing 
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 implementation is optimized for the radial basis function kernel only, which ob viously 
might be suboptimal for some data sets. 
 Many authors have noted the relationship between Support Vector Machines and 
regularized function estimation in the reproducing kernel Hilbert spaces (e.g. [5]). 
 However the differences of Support Vector Machines with the kernel methods 
may be underlined:
 – For suitable chosen transformation Support Vector Machines method has
  a powerful nonlinearities but still is very intuitive,
 – Support Vector Machines procedure retains most of the favorable properties
  of its linear input space version.
 Similarity of Support Vector Machines by mapping data can be also noticed for
the following methods:
 – neural network (single hidden layer): input data are mapped to some repre-
  sentation given by a hidden layer, 
 – radial basis neural network (RBF bumps),
 – boosting algorithm.
 The Support Vector Machines can be extended from the two-class classification 
to the multiclass case [2, 6]. Multi-class generalizations are obtained by combining 
of two-class Support Vector Machines procedures results. Well-known aggregation 
methods of two-class base classifiers are one-against-one class and one-against-all 
classes. Then the problem is changed by k Support Vector Machines two-class rules, 
which can be combined by different procedures. 
  As it was written above, the computational cost of Support Vector Machines 
is O(n2ns ), where ns is number of the support vectors. To reduce the computa-
tional costs, diminishing of the number of essential points used in the procedure 
was proposed by Zhu and Hastie [7], who obtained cost of O(n2 m2), where m is 
number of the “important points”. The Import Vector Machine method is faster than 
 Support Vector Machine, because the number of important points m is as a rule 
much smaller than the number of support vectors ns (m does not tend to increase 
as n increases). 
 One extension of Support Vector Machines is that for the regression task, 
another is one-class classification. Bennett & Campbell [8] gave an overview of
Support Vector Machines. On the contrary to some papers other authors concluded 
that boosting of Support Vector Machines is not beneficial for performance. How-
ever, it is well known that boosting of Support Vector Machines is very time-
-consuming. 
 Support Vector Machines perform well in pattern recognition, test classification 
and bioinformatics. Biological experiments from laboratory technologies like micro-
array and proteomic techniques create data with a very high number of variables, in 
general much larger than the number of examples. For that reason the feature selec-
tion gives an essential step in the analysis of such type of data. The feature selection 
in proteomic pattern data with Support Vector Machines can be done by a recurrent 
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feature elimination (RFE) and a recurrent feature replacement (RFR). The recurrent 
feature elimination method can be used for finding of starting gene subsets in the 
recurrent feature replacement method. 
 Performance of the Support Vector Machines methods for different kernels and 
different kernel parameters was compared on the ground of cross-validation, leave-
one-out error (which is a special case of cross-validation for number of folds equal 
to the size of training sample), learning curves and Receiver Operating Characteristic 
(ROC) curves.

3. Data Sets 

Medical data from the UCI Repository of Machine Learning Databases
(http://archive.ics.uci.edu) giving the different dimensions were applied to the clas-
sification. Mainly results for hepatitis data (155 patients), consisting of two classes: 
dead and alive, have been presented. Patients are characterized by 19 clinical features. 
This data set comes from G. Gong form Carnegie-Mellon University.
 Additional two data sets (diagnostic and prognostic) connected with breast cancer 
from the University of Wisconsin are also considered. Wisconsin Diagnostic Breast 
Cancer (WDBC) data set consists of 569 patients divided into two groups (malignant, 
benign ) and 30 variables based on ten real-valued features which are computed for 
each cell nucleus ( radius, texture, perimeter, area, smoothness, concavity, concave 
points, symmetry and fractal dimension). The variables are computed from a digi-
tized image of a fine needle aspirate of a breast mass. The data set does not contain 
missing values.
 Wisconsin Prognostic Breast Cancer (WPBC) data set consists of 198 instances 
described by 31 real-valued variables and one quantitative with 4 missing values. 
They describe characteristics of the cell nuclei present in the image, like mean, stand-
ard deviation and worst or largest value of characteristics based on ten real-valued 
features which are computed for each cell nucleus (radius, texture, perimeter, area, 
smoothness, concavity, concave points, symmetry and fractal dimension). Classifica-
tion variable is 2-year recurrence of breast cancer (151 patients with and 47 patients 
without recurrence).

4. Results and Discussion 

For analysis of hepatitis data two types of dimensionalities were considered: two-
dimensional discrimination with visualization of the resulting support vectors (where 
the selected most discriminating variables by minimizing 1-nearest neighbor 10-fold 
cross-validation error for Hepatitis data set are: bilirubine and prothrombine time) 
and the whole 19-dimensional feature space. 
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 The function to map the original to the higher-dimensional space is selected 
on basis of the designer understanding of the research area or from some class of 
kernels. For example, the most popular kernels may be considered: Gaussian, radial, 
sigmoidal kernels and polynomial or linear ones.
 Different Support Vector Machines kernels and different values of parameters C 
are studied (C not greater and also bigger than 1). Parameter C allows for overlap-
ping groups if it is smaller than 1. This parameter is connected with the penalization 
classification errors. Also the power (p) of raising the base kernel is considered (e.g. 
for a linear kernel, which after transforming with parameter p = 2 gives the quadratic 
kernel; higher values of p are equivalent to applying of the high-degree polynomial 
kernels). 

Fig. 1. Classification boundary of the quadratic Support Vector Machines discrimination between two 
classes (upper, “*” and “+” ) with the corresponding support vectors (down, “x”) for Hepatitis data 
set. Regularization parameter C = 1. Feature1-bilirubine, feature 2 – prothrombine time. Percentage

of SVs = 0.37. Apparent error = 0.17. Leave-one-out = 0.19
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 Additionally, two different dimensionalities of discrimination are examined. First, 
the two-dimensional discrimination is performed in order to illustrate the perform-
ance for different kernels and different regularization parameters C with visualization 
of the resulting support vectors on the plane. The most discriminating variables are 
chosen by iteratively selecting two optimal features using the criterion of 1-Nearest 
Neighbor error. The selected variables are: bilirubine (Feature 1) and prothrombine 
time (Feature 2). 
 Figures 1–2 plot the classification boundaries for polynomial with degree p = 2 
(quadratic) and the radial kernels and for different parameters C. Upper parts of the 
plots in Fig. 1 consist of points denoted by “*” and “+” depending on the group. Sign 
“+” denotes death and “*” denotes “patient alive”. On the corresponding down part 
of each plot “x” denotes the support vectors, the remaining points represent those 
observations that are not support vectors.
 For quadratic kernel function (polynomial with power p = 2) with regulariza-
tion parameter C = 1 the obtained results are presented in Fig. 1. Percentage of the 
support vectors relative to the size of learning sample is equal to 37%, resubstitution 
error is 0.17 and leave-one-out error is 0.19. For considerable changed regularization 
parameter C = 0.6 the figure very similar as presented in Fig. 1 was obtained with only 
the slightly higher direction of the boundary quadratic line and the slightly higher 
resubstitution error equal 0.18 with percentage of the support vectors and the leave-
one-error remaining the same. The results repeat for many values of the changed C 
in (0,1).
 Figure 2 represents a radial kernel Support Vector Machines with parameter 
C = 0.85 (resubstitution error equals 0.09, leave-one-out error equals 0.23 and 

Fig. 2. Classification boundary of the radial Support Vector Machines discrimination between two 
classes with the corresponding support vectors („x”) for Hepatitis data set. Regularization parame-
ter C = 0.85. Feature1-bilirubine, feature 2 – prothrombine time. Percentage of SVs = 0.7. Apparent

error = 0.09. Leave-one-out = 0.23
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 percentage of SVs is 70% ). For changed values of C very similar results are obtained. 
For example, after choosing of parameter C equal to 0.95 the results of percentage 
of SVs is a slightly higher (72%), however the resubstitution error remains of the 
same value 0.09 and the leave-one-out assessment of error is again equal to 0.23. 
 The plots illustrate under- and overfitting. The simple quadratic function (Fig. 1) 
may underfit the data and makes a learning error. The complex nonlinear radial kernel 
Support Vector Machines function (Fig. 2) has evident slighter training error (0.09), 
however, it is not generalizing well on unseen data, because the leave-out error is 
relatively big (about 0.23). In case of the quadratic Support Vector Machines with 
C = 1 and C = 0.6, where the discriminant boundary is not overfitted, the leave-one-
out errors (0.19) are similar to the training errors ( 0.17 and 0.18, respectively ). 
 It is interesting to investigate support vectors because of the connection between 
Support Vector Machines and boosting methods. For linear classifiers and many 
different values of the regularizing parameter C (however, in Fig. 1 presented for 
one value of C only) percentage of the support vectors is 37% of the whole sample. 
In contrast, for the radial basis function kernel (also for different values of C) the 
fraction of support vectors is much bigger: about 70% (chosen value of C equal to 
is 0.85 presented in Fig. 2). 
 To find the best parameters (the regularizing parameter C, the power p of raising 
the base kernel and the other kernel parameters), the cross-validation or the leave-
out error assessment can be applied. For radial basis kernels trying exponentially 
growing sequences of C and p is a useful method to find good parameters (for ex-
ample, C = 2–5, 2–3, 2–1, 2, 23, 25 , p = 2–5, 2–3, 2–1, 2, 23, 25) [4]. In the two-dimensional 
polynomial kernel model for hepatitis data, the linearly growing sequence of C and 
p will be used and leave-one-out error assessment methods are applied. 
 Values of the leave-one-out errors and percent of the support vectors as the 
function of two arguments: regularizing constant C and parameter p of power (the 
degree of polynomial kernel p in formula (8)) are considered. The functions are ap-
proximated by the table of the leave-one-out error (and percentage of support vectors, 
respectively) counted on the grid from 0 by 0.05 to 5 for C and values of power p from
1 to 10. Sample illustration of a part of the table for the quadratic kernel (p = 2) and 
values of the regularizing parameter C from the interval (0.1 > is presented in Fig. 3. 
The dashed line (corresponding to the left vertical axis) represents the leave-one-out 
error while the solid line (corresponding to the right vertical axis) is the percentage 
of support vectors.
 All grid points of C and other kernel parameters are examined to observe which 
one gives the highest accuracy. From the tabulated values (the whole big table is 
not presented here) the following outcomes can be derived. For values of power 
p greater than 5 the leave-one-out error and percentage of the support vectors do 
not depend on value of C parameter. For p greater than 3 the leave – one-out errors 
are not changing for values of C greater than 0.25, though corresponding percent-
age of the support vectors are slightly changed. For values of p smaller than 3 the 
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values of C smaller than 1.5 have a little impact on the leave-one-out error and also 
corresponding percentage of the support vectors are a bit changed. Thus we can 
conclude that for polynomial kernel more important than the regularizing constant 
C (which makes possible to overlap the classes) is the coefficient of power (of rais-
ing) p. Such kind of the analysis can be applied to choose optimal parameters C and 
p. For presented hepatitis data the satisfying pair of parameters is p in <4,6> and 
any value of C, achieving the smallest leave-one-out error equal to 0.12. For such 
selected parameters C and p the corresponding fraction of the support vectors out of 
all training observations is above 60%.

Fig. 3. Values of the leave-one-out error and percentage of the support vectors for quadratic kernel 
(p = 2) depending on values of the regularizing parameter C from the interval (0,1>. The dashed line 
– the leave-one-out error; the solid line – percentage of the support vectors. Hepatitis data set with two

most discriminating variables

 Next the multidimensional discrimination (19 attributes) of the hepatitis data 
set was examined. For many C and p values the multidimensional discrimination
(19 features) gave better results than for two best discriminating variables presented 
on the above-discussed figures (Figures 1–3). The dependencies of the cross-validation 
error and percentage of the support vectors on different parameters of the Support Vector 
Machines method with kernels defined by formulas (8) and (11) are also studied. 
 Pearson coefficients of cross-validation error (and also percentage of support 
vectors) with regularization C and other Support Vector Machines parameters for 
hepatitis data set with all 19 variables are examined. Table 1 presents the correlation 
coefficients. It is a summary of the cross-validation error depending on the regulari-
zation parameter C and parameters of the kernel function (as power p of polynomial 
kernel and γ- the coefficient for the radial kernel- see formulas (8) and (11)).
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 The correlation coefficients were obtained on basis of the cross-validation error 
values calculated on the grid constructed as a combination of 1000 equally distanced 
values of the regularizing parameters C from the interval (0.10> and additionally 
for some of the following parameters. Those additional parameters depend on the 
kernel type. One of them is the power p from the set {1,...,10} (it is the degree ap-
plied for the polynomial kernel). Another examined parameter is γ. This parameter 
can be applied for polynomial as well as radial kernel function- see formulas (8) and 
(11). The values of parameter γ differ between the minimum value equal to 1/(2*p) 
and the maximum value equal to 4/p (p-number of features). Thus kernel parameter 
γ is from interval <0.026, 0.21> . The last studied parameter is constant term a (for 
polynomial kernel- formula (8)). It has values from the interval <1.10>.

Table 1. Correlation coefficients of the Support Vector Machines cross-validation errors with the regu-
          larization parameters C and other kernel parameters. Hepatitis data set with 19 variables

Number Kernel function Correlation with C Correlation
with kernel parameter

1 Polynomial with
γ = 0.026, a = 0 –0.3 p 0.83

2
Polynomial with degree p = 2 –0.24

γ -0.43
a 0.13

3
Polynomial with degree p = 3 0.13

γ 0.33
a 0.14

4
Polynomial with degree p = 4 –0.12

γ –0.64
a 0.15

5
Polynomial with degree p = 5 –0.04

γ –0.37
a 0.18

6
Polynomial with degree p = 6 –0.06

γ –0.58
a 0.28

7
Radial –0.25

γ 0.33

 Correlations of the cross-validation errors in all considered configurations of 
kernel parameters C, p, γ, a are summarized in Table 1. The dependence (assessed by 
absolute value of the correlation coefficient) of the cross-validation (CV-10) errors on 
the regularizing parameter C is smaller than the dependence of the cross-validation 
errors on other considered parameters presented in Table 1. This advantage is espe-
cially visible for the polynomial Support Vector Machines and the degree parameter 
p (from 1 to 10) i.e. correlation equal to 0.83 for dependence of CV-10 error on de-
gree of polynomial versus the value of correlation equal to |–0.3| for dependence of 
CV error on the parameter C. Thus, for the polynomial kernel the correlation of the 
cross-validation error depends most strongly on the degree of polynomial (correlation 



77Performance of the Support Vector Machines...

equal to 0.83). Relationships between CV errors and γ parameter of the polynomial 
(p from 2 to 6) and the radial kernels are smaller. The dependence of CV errors on 
the parameter “a” of the polynomial kernel function measured by correlation coeffi-
cient is below 0.2. 
 The selection of the Support Vector Machines (parameter C and also parameters 
of the kernel function) can be done on the basis of testing sample, cross-validation 
error or leave-one-out error. We should avoid too big fitting of the shape of discri-
minant hypersurface to data set (like too big parameter p in polynomial kernel). For 
example, it is not useful to choose values of p grater than 6, because the high number 
of the support vectors and increasing of the leave-one-out classification errors are 
obtained. 

Table 2. Correlation coefficients of percentage of the support vectors with the regularization parameters
         C and dimensionality of ascending subsets of the most discriminating variables sorted by the
            criterion of Wilks lambda. Hepatitis data set with 19 variables

Number Kernel function Correlation with the
regularization parameter C

Correlation with
dimensionality d in the 

original space

1 Linear –0.11 –0.71
2 Polynomial, degree p = 2 –0.36 0.79
3 Polynomial, degree p = 3 –0.12 0.92
4 Polynomial, degree p = 4 0.07 0.94
5 Polynomial, degree p = 5 0 0.97
6 Polynomial, degree p = 6 0.06 0.95

7 Radial –0.36 0.76

 Correlations of the number of the support vectors in the considered configura-
tions of parameters C and d (dimensionality) are summarized in Table 2. For the 
polynomial and radial kernels the strong relationship between the ratio of the sup-
port vectors to the size of training set with the dimensionality of the data should be 
underlined (Table 2).
 The performance of Support Vector Machines was also examined in terms of 
AUC- the area under Receiver Operating Characteristic curves (ROC). The latter 
was performed for WPBC and WDBC data.
 For Wisconsin Prognostic Breast Cancer data set (WPBC) the discrimination on 
the whole feature space (30 variables) and additionally (to make faster the boosting 
Support Vector Machines procedure, which is time-consuming) for 5 most impor-
tant variables chosen by the criterion of 10-fold cross-validation error for 1-nearest 
neighbor was examined. For Wisconsin Diagnostic Breast Cancer data set (WDBC) 
the discrimination based on all 32 features was studied. 
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 For WDBC data set the ROC curves of radial Support Vector Machines for dif-
ferent values of the regularizing parameter C are practically identical – for all values 
of C in {1/16, 1/8 , ¼, ½, 1, 2, 4, 8, 16} and the AUC values are the same (Fig. 4). 
Similar situation – in comparing the ROC curves for different C parameters – is ob-
tained for WPBC data set, which is known as difficult for classification. For example, 
after application of quadratic kernel (polynomial kernel with the degree equal to 2) 
the ROC curves of Support Vector Machines for different values of regularizing 
parameters C (1/16, 1/8 , ¼, ½, 1, 2, 4, 8, 16) are practically identical (Fig. 5).
 Combining of Support Vector Machines with the boosting method for the ex-
amined data sets was found not useful. Example result is visible in Fig. 6, which 
presents the learning curve (plot showing the dependency of errors from number 

Fig. 5. Overlying ROC curves for the different regularizing parameters C (1/16, 1/8 , ¼, ½, 1, 2, 4,
8, 16) for Support Vector Machines with the quadratic kernel. WPBC data set with 32 variables

Fig. 4. Overlying ROC curves for the different regularizing parameters C (1/16, 1/8 , ¼, ½, 1, 2, 4, 8, 16)
for Support Vector Machines with the radial kernel. WDBC data set with 30 variables
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of loops) for 10, 20, …, 200 loops of the boosting radial Support Vector Machines 
base classifier (raised to the power 3). This figure presents difficult to discrimi-
nate Wisconsin Prognostic Data Set with chosen 5 most discriminating variables 
 (selected on the basis of minimizing 10-fold cross-validation error for k = 1 nearest 
neighbor). From the learning curve it is visible that only the resubstitution error has 
decreased with the succeeding loops (from 10 to 200). However, no improvement by 
the criterion of leave-one-out and cross-validation classification error estimate was 
obtained after comparison with the alone base classifier (where the cross-validation 
and leave-one-errors are equal to 0.297). So the boosting Support Vector Machines 
for the considered data was highly overfitted and not helpful.
 The boosting Support Vector Machines did not also improve the performance 
for the different data sets examined in the work. Usefulness of the boosting Support 
Vector Machines is not consistent by different authors. The boosting combined with 
the Support Vector Machines method is complex and time consuming and according 
to most authors it does not give improvement of performance. On he other hand, by 
Lili at al. [9] the ensemble of boosting with Support Vector Machines has proven 
to be possible beneficial, but it is too complex to be practicable. The authors set up 
a successful method to boost Support Vector Machine. It applies the inspiration of 
dynamic learning to dynamically select “important” samples into learning sample set 
for building base classifiers. This technique retains a small training sample set with 
specified size in order to control the complexity of each base classifier. In a different 
way than creating each base Support Vector Machines classifier directly, it uses the 
learning sets only for finding the support vectors. This technique to merge boost-
ing and Support Vector Machines has been proven to be accurate and efficient by 
experimental outcomes. 

Fig. 6. Learning curve. Resubstitution, cross-validation and leave-one – out errors for combining the ra-
dial Support Vector Machines (raised to the power 3) with 10, 20,…, 200 loops of the boosting. WPBC 

data set
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 In SVC – global optimization in order to maximize the minimal margin is 
achieved, while in boosting one maximizes the margin locally for each learning 
observation. Thus the Support Vector Machines and the boosting are both based on 
maximizing of margins. Additionally in both methods idea is focused on objects 
difficult to classify The object obtaining large weights may occur the same as the 
support vectors: Skurichina and Duin [10] found that on average, support vectors 
found by Support Vector Machines get larger weights in the boosting procedure, 
than non-support vectors, however, objects with large weights in the boosting are 
not identical to the support vectors found by the SVC method. Those similarities of 
Support Vector Machines and boosting may be the reason of failure to improve the 
classification performance by combining boosting and Support Vector Machines 
method. 

5. Conclusions

For the performance of Support Vector Machines more important than the regu larizing 
parameter C is the kind of the kernel and additionally the power to which the kernel 
(for example in the polynomial kernel) is raised. Thus a shape of the kernel trans-
formation is the most important.
 Strong dependence of ratio of the support vectors to the size of training set on 
the dimensionality of the data can be noted. 
 Ensemble of Support Vector Machines with boosting gave not advance on per-
formance by the cross validation errors criterion in comparison to the alone Support 
Vector Machines base classifier. This can be explained by the fact that both Support 
Vector Machines and boosting pay attention on observations hard for discrimination. 
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